Polymerization of tetramethylcyclotetra- siloxane monomer by ion-exchanged montmorillonite catalysts

نویسنده

  • S. Nishihama
چکیده

AB S TRACT: Montmorillonites ion-exchanged with Li +, Na +, K § Ca 2+, Mg 2+ and Ni 2+ and acidic clay were used as catalysts for the polymerization of a cyclic siloxane monomer, 2,4,6,8tetramethylcyclotetrasiloxane. Montmorillonites with Ni 2+ and Mg 2+ in the interlayer, and acidic clay exhibit a greater ability for siloxane polymerization in both yield and mean molecular weight of products than those containing Li +, Na + and K +. The difference in catalytic ability of the ionexchanged montmorillonites is caused by the number of Brmasted acid sites due to the polarization of H20. This was confirmed experimentally by FTIR analysis of pyridine-treated samples. Therefore, it may be possible to design a catalyst for controlling siloxane polymerization (i.e. mean molecular weight of product) by changing the number of Bronsted acid sites through exchange of the interlayer cations of montmorillonites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polycondensation of Tetrahydrofuran with Phthalic Anhydride Induced By a Proton Exchanged Montmorillonite Clay

“Maghnite” a montmorillonite sheet silicate clay, exchanged with protons to produce “H-Maghnite” is an efficient catalyst for polymerization of many vinylic and heterocyclic monomers (Belbachir, M. U.S. Patent. 066969.0101 –2001). The structure compositions of both “Maghnite” and “H-Maghnite” have been developed. This catalyst was used for the polycondensation of the tetrahydrofuran with phthal...

متن کامل

Morphology control of clay-mineral particles as supports for metallocene catalysts in propylene polymerization

Spray dry granulation of clay minerals was studied to obtain clay mineral base support material for metallocene supported olefin polymerization catalysts. The morphology of the granules was strongly influenced by the nature of the clay mineral itself. Because of swelling characteristics of montmorillonite, its water dispersion was highly viscous even in the low slurry concentration (< 4 wt %). ...

متن کامل

Kinetics of ethylene polymerization over titanium-magnesium catalysts: The reasons for the observed second order of polymerization rate with respect to ethylene

The data on the effect of ethylene concentration on polymerization rate for several modifications of modern highly active titanium–magnesium catalysts TiCl4/MgCl2 are presented. These catalysts differ in titanium content and conditions of support preparation, activities, and the shape of kinetic curves. It is found that the observed order of polymerization rate with respect to ethylene in the r...

متن کامل

Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts

The liquid phase esterification of phenyl acetic acid with p-cresol over different metal cation exchanged montmorillonite nanoclays yields p-cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n+ = Al3+, Zn2+, Mn2+, Fe3+, Cu2+) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants,...

متن کامل

Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles.

Ring-expansion metathesis polymerization (REMP) mediated by recently developed cyclic Ru catalysts has been studied in detail with a focus on the polymer products obtained under varied reaction conditions and catalyst architectures. Depending upon the nature of the catalyst structure, two distinct molecular weight evolutions were observed. Polymerization conducted with catalysts bearing six-car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006